Think! Evidence

Eye-opening and control of visual synapse development in the mouse superior colliculus

Show simple item record

dc.contributor Martha Constantine-Paton.
dc.contributor Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences.
dc.contributor Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences.
dc.creator Phillips, Marnie A. (Marnie Ann)
dc.date 2007-09-28T13:31:17Z
dc.date 2007-09-28T13:31:17Z
dc.date 2007
dc.identifier http://hdl.handle.net/1721.1/39005
dc.identifier 166572981
dc.description Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2007.
dc.description "June 2007."
dc.description Includes bibliographical references.
dc.description The mammalian superior colliculus (SC) coordinates visual, somatosensory, and auditory stimuli to guide animal behavior. The superficial layers (sSC) receive visual information via two major afferent projections: 1) A direct retinal projection and 2) an indirect projection from Layer V visual cortex. The retinal projection reaches the rat sSC by embryonic day 16, is topographic, and refines to form a high resolution map of visual space early in development, before eye-opening in rodents (-P12-P14). The cortical projection is delayed by about eight days, just reaching the sSC around P4, and does not complete its topographic refinement until around the time of eye-opening. These afferents compete for synaptic space during a time when patterns of spontaneous and evoked activity are rapidly changing. I have used the mouse sSC as a model system to test the role of new activity patterns due to the initial onset of visual experience after eye-opening in visual synaptic development. I have described the organization of retinal and cortical afferents and the laminar organization of the mouse sSC in Chapter 3. Previous work demonstrated eye-opening (EO) induces the appearance of dendritic PSD-95 and LTP in the sSC within 2-4 hours.
dc.description (cont.) I provide evidence that EO-induced PSD-95 trafficking is required for the stabilization of new synapses in vivo as a result of patterned visual experience after eye-opening. mEPSC frequency recorded in a vertical neuronal subtype of the mid-SGS increases at least three-fold after eye-opening, indicating a rapid synaptogenesis that does not occur in PSD95KO mice, or in age-matched littermates deprived of initial visual experience. A structural analysis of these neurons revealed caliber-specific patterns of spine and filopodia development that depend on EO and the projection from visual cortex. Between P11 and P13, dendrites post-synaptic to cortical axons undergo an EO-independent tripling of filopodial density and an EO-dependent maintenance of dendritic spine density. These data suggest that rapid vision-induced trafficking of PSD-95 enables long-term potentiation and stabilization of newly formed cortico-collicular synapses in response to patterned visual stimuli. Furthermore, these data suggest that cortical inputs are sensitive to pattern vision deprivation between P12 and P13, but retinal inputs are not.
dc.description by Marnie A. Phillips.
dc.description Ph.D.
dc.format 128 p.
dc.format application/pdf
dc.language eng
dc.publisher Massachusetts Institute of Technology
dc.rights M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.
dc.rights http://dspace.mit.edu/handle/1721.1/7582
dc.subject Brain and Cognitive Sciences.
dc.title Eye-opening and control of visual synapse development in the mouse superior colliculus
dc.type Thesis


Files in this item

Files Size Format View
166572981-MIT.pdf 18.90Mb application/pdf View/Open

Files in this item

Files Size Format View
166572981-MIT.pdf 18.90Mb application/pdf View/Open

Files in this item

Files Size Format View
166572981-MIT.pdf 18.90Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search Think! Evidence


Browse

My Account