Description:
Ubiquitous learning allows students to learn at any time and any place. Adaptivity plays an important role in ubiquitous learning, aiming at providing students with adaptive and personalized learning material, activities, and information at the right place and the right time. However, for providing rich adaptivity, the student model needs to be able to gather a variety of information about the students. In this paper, an automatic, global, and dynamic student modeling approach is introduced, which aims at identifying and frequently updating information about students’ progress, learning styles, interests and knowledge level, problem solving abilities, preferences for using the system, social connectivity, and current location. This information is gathered in an automatic way, using students’ behavior and actions in different learning situations provided by different components/services of the ubiquitous learning environment. By providing a comprehensive student model, students can be supported by rich adaptivity in every component/service of the learning environment. Furthermore, the information in the student model can help in giving teachers a better understanding about the students’ learning process.